Aturan Cosinus

Untuk menurunkan rumus aturan cosinus, perhatikan segitiga ABC di bawah ini. Garis CD=h adalah garis tinggi pada sisi c.

Dengan menerapkan teorema Pythagoras pada segitiga siku-siku BCD, diperoleh:
a2=h2+(BD)2 ... (1)

Pada segitiga siku-siku ACD, diperoleh:
h=bsinA ... (2)
dan
AD=bcosA
sehingga
BD=AB-AD=c-bcosA ... (3)

Substitusi h=bsinA dan BD=c-bcosA ke persamaan (1), diperoleh:
a2=(bsinA)2+(c-bcosA)2
⇔ a2=b2sin2A+c2-2bccosA+b2cos2A
⇔ a2=b2(sin2A+cos2A)+c2-2bccosA
⇔ a2=b2+c2-2bccosA ... (4a)

Dengan menggunakan segitiga yang sama tapi letak titik sudutnya ditukar akan diperoleh rumus aturan cosinus yang lainnya, yaitu:
b2=a2+c2-2accosB ... (4b)
c2=a2+b2-2abcosC ... (4c)
Persamaan (4a), (4b), dan (4c) merupakan aturan cosinus.

Untuk melengkapi pembuktian aturan cosinus, di bawah ini ditunjukkan penurunan rumus aturan cosinus dari segitiga tumpul. Perhatikan segitiga tumpul ABC di bawah. Garis CD=h adalah garis tinggi dari titik C pada perpanjangan sisi c.

Dengan menerapkan teorema Pythagoras pada segitiga siku-siku BCD, diperoleh:
a2=h2+(BD)2 ... (1)

Pada segitiga siku-siku ACD, diperoleh:
h=bsinCAD=bsin(180°-A)=bsinA ... (2)
dan
AD=bcosCAD=bcos(180°-A)=-bcosA
sehingga BD=AB+AD=c+(-bcosA)=c-bcosA ... (3)

Substitusi h=bsinA dan BD=c-bcosA ke persamaan (1), diperoleh:
a2=(bsinA)2+(c-bcosA)2
⇔ a2=b2sin2A+c2-2bccosA+b2cos2A
⇔ a2=b2(sin2A+cos2A)+c2-2bccosA
⇔ a2=b2+c2-2bccosA ... (4a)

Dengan menggunakan segitiga yang sama tapi letak titik sudutnya ditukar akan diperoleh rumus aturan cosinus yang lainnya, yaitu:
b2=a2+c2-2accosB ... (4b)
c2=a2+b2-2abcosC ... (4c)

Aturan Cosinus
Pada segitiga ABC berlaku aturan cosinus sebagai berikut.

  • a2=b2+c2-2bccosA
  • b2=a2+c2-2accosB
  • c2=a2+b2-2abcosC

Jika dalam segitiga ABC diketahui sisi-sisi a, b, dan c (sisi-sisi-sisi) maka besar sudut-sudut A, B, dan C dapat ditentukan dengan rumus:

Contoh Soal
Diket segitiga ABC memiliki perbandingan sisi-sisinya 2:3:4. Nilai cosinus sudut terbesar adalah...

Jawaban

cos sudut terbesar = 22+32-42
2(2)(3)
= -3
12
= - 1
4

Oleh Opan
Dipostkan February 25, 2011
Seorang guru matematika yang hobi ngeblog dan menulis. Dari ketiganya terwujudlah website ini sebagai sarana berbagi pengetahuan yang saya miliki.

Gabung grup telegram t.me/mathsid untuk diskusi dan tanya-jawab

Sering Dibaca

Demi menghargai hak kekayaan intelektual, mohon untuk tidak menyalin sebagian atau seluruh halaman web ini dengan cara apa pun untuk ditampilkan di halaman web lain atau diklaim sebagai karya milik Anda. Tindakan tersebut hanya akan merugikan diri Anda sendiri. Jika membutuhkan halaman ini dengan tujuan untuk digunakan sendiri, silakan unduh atau cetak secara langsung.